- BROWN, W. A. C., MARTIN, J. & SIM, G. A. (1965). J. Chem. Soc. pp. 1844–1857.
- Coulson, C. A. (1948). Victor Henri Memorial Volume, pp. 15-31. Liège: Desoer.
- CRADWICK, P. D. & SIM, G. A. (1971). J. Chem. Soc. B, pp. 2218–2221.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321–324.
- DOBLER, M. & DUNITZ, J. D. (1964). Helv. Chim. Acta, 47, 695-704.
- DUNITZ, J. D. (1968). Perspect. Struct. Chem. 2, 1-70.
- ENGLER, E. M., ANDOSE, J. D. & SCHLEYER, P. VON R. (1973). J. Am. Chem. Soc. 95, 8005–8025.
- ERMER, O., DUNITZ, J. D. & BERNAL, I. (1973). Acta Cryst. B29, 2278–2285.
- ERMER, O. & LIFSON, S. (1973). J. Am. Chem. Soc. 95, 4121–4132.
- FITZWATER, S. & BARTELL, L. S. (1976). J. Am. Chem. Soc. 98, 5107-5115.
- HENDRICKSON, J. B. (1967). J. Am. Chem. Soc. 89, 7036– 7043, 7043–7046, 7047–7061.
- Ніскмотт, Р. W., Cox, P. J. & Sim, G. A. (1974). J. Chem. Soc. Perkin Trans. 1, pp. 2544–2548.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 215. Birmingham: Kynoch Press.

- LAIRD, A. E. & TYLER, J. K. (1977). Personal communication.
- MARVELL, E. N. & KNUTSON, R. S. (1970). J. Org. Chem. 35, 388-391.
- OSINA, E. L., MASTRYUKOV, V. S., VILKOV, L. V. & BELIKOVA, N. A. (1976). J. Chem. Soc. Chem. Commun. pp. 12–13.
- SMITH, A. E. (1972). Inorg. Chem. 11, 3017-3020.
- STEWART, J. M., KRUGER, G. J., AMMON, H. L., DICKINSON, C. & HALL, S. R. (1972). Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
- TAMURA, C. & SIM, G. A. (1968). J. Chem. Soc. B, pp. 1241-1248.
- WEBB, N. C. & BECKER, M. R. (1967). J. Chem. Soc. B, pp. 1317–1321.
- WHITE, D. N. J. & BOVILL, M. J. (1976). J. Mol. Struct. 33, 273–277.
- WHITE, D. N. J. & BOVILL, M. J. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1610–1623.
- ZEFIROV, N. S., ROGOZINA, S. V., KURKUTOVA, E. H., GONCHAROV, A. V. & BELOV, N. V. (1974). J. Chem. Soc. Chem. Commun. pp. 260–261.

Acta Cryst. (1979). B35, 675-678

The Crystal and Molecular Structure of the Neuroleptic Pimozide Hydrochloride, 1-{1-[4,4-bis(4-fluorophenyl)butyl]-4-piperidyl}-2-benzimidazolinone HCl

BY NARAYANDAS DATTA[†], PANCHALI MONDAL AND PETER PAULING^{*}

William Ramsay, Ralph Forster, and Christopher Ingold Laboratories, University College London, Gower Street, London WC1, England

(Received 27 July 1978; accepted 23 November 1978)

Abstract

Crystals of pimozide, $C_{28}H_{29}F_2N_3O.HCl$, are monoclinic, space group $P2_1/c$ with unit-cell dimensions a = 10.007 (3), b = 25.880 (9), c = 10.014 (4) Å, $\beta = 99.15$ (7)°, Z = 4. The crystal structure was analysed by the heavy-atom method and refined by full-matrix least-squares calculations to a final R of 0.046.

Introduction

Pimozide, $C_{28}H_{29}F_2N_3O.HCl$ (*R*24970; pimozide base: *R*6238; pimozide HBr: *R*24969) is a neuroleptic

* Present address: Chemistry Department, University College London, 20 Gordon Street, London WC1H 0AJ.

0567-7408/79/030675-04\$01.00

(major tranquillizer) drug with anticholinergic activity. As part of a systematic study of substances affecting the peripheral and central nervous systems, the crystal structure of pimozide HCl was analyzed.

Experimental

Crystals of pimozide hydrochloride (R24970) obtained from Janssen Laboratories, grown from a saturated solution of methanol and water (4:1) at 313 © 1979 International Union of Crystallography

[†] Deceased 17 June 1976.

K are colourless plates elongated along the c axis and show the forms {100} and {010}. Space group and preliminary cell parameters were determined from oscillation and precession photographs. Refined cell parameters and standard deviations were determined by use of the cell-refinement program written by Busing, Ellison, Levy, King & Rosebury (1968).

Crystal data

Pimozide HCl, $C_{28}H_{29}F_2N_3O$. HCl, $M_r = 498.029$, a = 10.007 (3), b = 25.880 (9), c = 10.014 (4) Å, $\beta =$ 99.15 (7)°, V = 2560.5 Å³, $D_m = 1.295$ Mg m⁻³, Z =4, $D_x = 1.292$ Mg m⁻³. Systematic absences: h0l for l = 2n + 1, 0k0 for k = 2n + 1. Space group $P2_1/c$.

Data collection and processing

Three-dimensional X-ray intensity data from a single crystal were collected on a computer-controlled Stoe four-circle diffractometer using Mo $K\alpha$ radiation with graphite monochromator (002). A coupled θ -2 θ step scan with $\Delta 2\theta = 0.04^{\circ}$, a counting time of 2 s per step and a peak width of 1.6° were used. The standard reflexion ($\bar{3}11$) was measured at an interval of 25 reflexions. In the range $2\theta = 5-45^{\circ}$, 3811 reflexions covering one quadrant of reciprocal space ($\pm h,k,l$) were collected of which 2529 had $I \ge 3\sigma(I)$. These 2529 symmetry-independent observed data were used for the determination of the structure. The data were corrected for Lorentz and polarization effects. No corrections for absorption or extinction were made.

Structure determination and refinement

The position of the chloride ion was determined from a sharpened Patterson synthesis. A Fourier synthesis using observed data phased on the chloride ion produced a satisfactory trial structure. A subsequent Fourier map phased on the trial structure revealed all non-hydrogen atoms. Several cycles of full-matrix isotropic refinement converged to an R of 0.13 and a further two cycles of anisotropic full-matrix refinement of all non-hydrogen atoms converged to an R of 0.081. A difference Fourier map phased with these refined atoms showed all the hydrogen atom positions. The hydrogen atoms were assigned isotropic thermal parameters of 0.063 Å² ($U_{\rm iso}$). The final anisotropic refinement of all the non-hydrogen atoms and positional-parameter refinement of all the hydrogen atoms were continued until all parameter shifts were $\leq 0.1\sigma$. The function minimized was $\sum w(|F_o| - |F_c|)^2$ with w = 1 for all reflexions. The final R was 0.046. Atomic scattering factors for neutral carbon, nitrogen, oxygen, fluorine and for the chloride ion were taken from the published values of Cromer & Waber (1965) and for hydrogen from *International Tables for X-ray Crystallography* (1962). The final positional parameters for non-hydrogen atoms are listed in Table 1 and hydrogen atom positions in Table 2.*

* Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34068 (19 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Fraction	al coordinates	$(\times 10^4) f$	rom least-
squares refinement	with estimated	standard	deviations
	in parentheses	1	

	x	у	z
Cl(1)	221(1)	754 (0)	1380(1)
C(I)	5287 (5)	1759 (2)	162 (5)
C(2)	4007 (5)	1565 (2)	244 (5)
C(3)	6444 (5)	1501 (2)	751 (5)
C(4)	3837 (4)	1105 (2)	910 (4)
C(5)	4994 (4)	849 (1)	1510 (4)
C(6)	6279 (4)	1044 (1)	1417 (4)
N(1)	5204 (3)	389 (1)	2256 (3)
C(7)	6585 (4)	293 (2)	2598 (4)
N(2)	7224 (3)	706 (1)	2098 (3)
O(1)	7101 (3)	-79(1)	3223 (3)
C(8)	4195 (4)	21(1)	2610 (4)
C(9)	3404 (4)	-222(2)	1339 (4)
C(10)	2304 (4)	-583 (1)	1687 (4)
N(3)	1386 (3)	-281(1)	2434 (3)
C(11)	2140 (4)	-93 (2)	3748 (4)
C(12)	3263 (4)	276 (2)	3484 (4)
C(13)	67 (4)	-576 (2)	2570 (5)
C(14)	155 (4)	-964 (2)	3708 (5)
C(15)	-1248(4)	-1224 (2)	3545 (5)
C(16)	-1568 (4)	-1474 (1)	4824 (4)
C(17)	-5341 (5)	-1722 (2)	3568 (6)
C(18)	-3987 (4)	-1607 (2)	3573 (5)
C(19)	-3069 (4)	-1601(1)	4756 (5)
C(20)	-3545 (4)	-1705 (2)	5954 (5)
C(21)	-4902 (5)	-1813 (2)	5978 (5)
C(22)	-5759 (4)	-1816 (2)	4770 (6)
F(1)	-7092 (3)	-1930 (1)	4775 (4)
C(23)	-215 (5)	-2861 (2)	4959 (5)
C(24)	-948 (4)	-2418 (2)	4533 (5)
C(25)	717 (4)	-1958 (1)	5251 (4)
C(26)	267 (4)	-1946 (2)	6369 (5)
C(27)	1014 (4)	-2387 (2)	6822 (5)
C(28)	744 (4)	-2829 (2)	6068 (5)
F(2)	1467 (3)	-3263(1)	6503 (3)

Fig. 1. View of the pimozide molecule as observed in crystals of the hydrochloride and atomic numbering.

Description and discussion of the structure

Fig. 1 shows the atom-numbering scheme on a drawing of the molecule with depth cues. Bond distances and angles for a unique molecule are listed in Tables 3 and 4. Table 5 gives the mean-plane equations for certain groups of atoms in the molecule. It shows that each of the aromatic benzene rings is planar within experimental error. The fused six-membered aromatic ring [C(1)-C(6)] and five-membered ring [C(5)-C(7)] and O(1) are nearly coplanar. The conformation of the molecule is described in terms of selected torsion angles in Table 6. Intermolecular distances <3.6 Å for nonhydrogen atoms are shown in Table 7.

Fig. 2. Molecular packing of pimozide hydrochloride viewed along the $-a^*$ axis.

Table 2.	Frac	tional coord	inates for	hydrogen	atoms
$(\times 10^{3})$	with	estimated	standard	deviation	ıs in
parentheses					

	x	У	Ζ
H(1)	535 (5)	207 (2)	-37 (5)
H(2)	321 (5)	175 (2)	-22(5)
H(3)	733 (5)	163 (2)	61 (5)
H(4)	290 (5)	97 (2)	89 (5)
H(5)	820 (5)	71 (2)	210 (5)
H(6)	475 (5)	-26 (2)	320 (5)
H(7)	294 (5)	6 (2)	66 (5)
H(8)	401 (5)	-42 (2)	85 (5)
H(9)	270 (5)	-89 (2)	230 (5)
H(10)	172 (5)	-73 (2)	79 (5)
H(11)	77 (5)	2 (2)	176 (5)
H(12)	143 (5)	8 (2)	436 (5)
H(13)	246 (5)	-37 (2)	437 (5)
H(14)	374 (5)	38 (2)	439 (5)
H(15)	281 (5)	58 (2)	304 (5)
H(16)	-36 (5)	-72 (2)	171 (5)
H(17)	-73 (5)	-25 (2)	273 (5)
H(18)	91 (5)	-120 (2)	366 (5)
H(19)	42 (5)	-77 (2)	467 (5)
H(20)	-196 (5)	-94 (2)	317 (5)
H(21)	-141 (5)	-149 (2)	269 (5)
H(22)	-120 (5)	-115 (2)	548 (5)
H(23)	-599 (5)	-174 (2)	277 (5)
H(24)	-367 (5)	-154 (2)	262 (5)
H(25)	-290 (5)	-172 (2)	685 (5)
H(26)	-523 (5)	-192 (2)	684 (5)
H(27)	-34 (5)	-320 (2)	453 (5)
H(28)	-167 (5)	-243 (2)	383 (5)
H(29)	47 (5)	-161 (2)	698 (5)
H(30)	180 (5)	-238 (2)	768 (5)

Fig. 2 shows the molecular packing viewed down the $-a^*$ axis. The figure was produced using a modified version of the program *PLUTO* written by Motherwell, Jones & Pauling (unpublished). All computational work was carried out on the University College London IBM 360, University of London CDC 6600 and our GT 44. The programs for the GT 44 were written by Douglas Richardson.

Table 3. Interatomic distances (Å) and angles (°) fornon-hydrogen atoms with estimated standard deviationsin parentheses

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(a) Bond distances			
$ \begin{array}{c} (b) \text{ Angles} \\ \hline (b) \text{ Angles} \\ \hline (c) - C(1) - C(3) & 121 \cdot 1 & (5) & N(3) - C(13) - C(14) & 116 \cdot 4 & (4) \\ C(1) - C(2) - C(4) & 121 \cdot 5 & (5) & C(13) - C(14) - C(15) & 105 \cdot 5 & (4) \\ C(1) - C(3) - C(6) & 117 \cdot 6 & (5) & C(14) - C(15) - C(16) & 114 \cdot 1 & (4) \\ C(2) - C(4) - C(5) & 117 \cdot 4 & (4) & C(15) - C(16) - C(25) & 113 \cdot 7 & (4) \\ C(4) - C(5) - C(6) & 120 \cdot 8 & (4) & C(15) - C(16) - C(25) & 113 \cdot 7 & (4) \\ C(4) - C(5) - N(1) & 132 \cdot 9 & (4) & C(19) - C(16) - C(25) & 113 \cdot 7 & (4) \\ C(6) - C(5) - N(1) & 132 \cdot 9 & (4) & C(17) - C(18) - C(19) & 121 \cdot 5 & (5) \\ C(3) - C(6) - N(2) & 130 \cdot 9 & (2) & C(16) - C(19) - C(18) & 123 \cdot 8 & (4) \\ C(5) - C(6) - N(2) & 130 \cdot 9 & (2) & C(16) - C(19) - C(20) & 118 \cdot 3 & (4) \\ C(5) - N(1) - C(7) & 110 \cdot 0 & (3) & C(18) - C(19) - C(20) & 118 \cdot 3 & (4) \\ C(5) - N(1) - C(8) & 128 \cdot 8 & (3) & C(19) - C(20) - C(21) & 123 \cdot 1 & (5) \\ N(1) - C(7) - N(2) & 105 \cdot 8 & (2) & C(17) - C(22) - C(21) & 123 \cdot 1 & (5) \\ N(1) - C(7) - O(1) & 126 \cdot 3 & (4) & C(17) - C(22) - F(1) & 118 \cdot 7 & (5) \\ N(1) - C(7) - O(1) & 126 \cdot 3 & (4) & C(17) - C(22) - F(1) & 118 \cdot 7 & (5) \\ N(1) - C(8) - C(2) & 110 \cdot 5 & (4) & C(23) - C(24) - C(25) & 120 \cdot 8 & (4) \\ N(1) - C(8) - C(12) & 111 \cdot 3 & (3) & C(16) - C(25) - C(24) & 121 \cdot 0 & (4) \\ C(9) - C(8) - C(12) & 111 \cdot 3 & (3) & C(16) - C(25) - C(26) & 120 \cdot 4 & (4) \\ C(8) - C(9) - C(10) & 111 \cdot 0 & (4) & C(24) - C(25) - C(26) & 120 \cdot 4 & (4) \\ C(9) - C(10) - N(3) & 108 \cdot 5 & (4) & C(23) - C(28) - C(27) & 123 \cdot 9 & (5) \\ C(10) - N(3) - C(13) & 112 \cdot 8 & (4) & C(23) - C(28) - F(2) & 116 \cdot 8 & (5) \\ C(11) - N(3) - C(13) & 113 \cdot 7 & (4) & C(23) - C(28) - F(2) & 118 \cdot 7 & (4) \\ \end{array}$	$\begin{array}{cccc} C(1)-C(2) & 1 \\ C(1)-C(3) & 1 \\ C(2)-C(4) & 1 \\ C(4)-C(5) & 1 \\ C(3)-C(6) & 1 \\ C(5)-C(6) & 1 \\ C(5)-N(1) & 1 \\ C(5)-N(1) & 1 \\ C(6)-N(2) & 1 \\ C(7)-N(2) & 1 \\ C(7)-N(2) & 1 \\ C(7)-N(2) & 1 \\ C(7)-O(1) & 1 \\ N(1)-C(8) & 1 \\ C(8)-C(9) & 1 \\ C(9)-C(10) & 1 \\ C(10)-N(3) & 1 \\ N(3)-C(11) & 1 \\ C(8)-C(12) & 1 \\ C(11)-C(12) & 1 \\ N(3)-C(13) & 1 \\ \end{array}$	399 (6) 384 (6) 388 (6) 385 (5) 380 (6) 398 (5) 403 (5) 391 (5) 385 (4) 380 (4) 218 (5) 472 (4) 523 (5) 527 (5) 494 (5) 499 (5) 527 (5) 530 (5) 549 (5)	$\begin{array}{c} C(13)-C(14)\\ C(14)-C(15)\\ C(15)-C(16)\\ C(17)-C(18)\\ C(16)-C(19)\\ C(18)-C(19)\\ C(19)-C(20)\\ C(20)-C(21)\\ C(21)-C(22)\\ C(21)-C(22)\\ C(21)-C(22)\\ C(22)-F(1)\\ C(23)-C(24)\\ C(16)-C(25)\\ C(24)-C(25)\\ C(26)-C(27)\\ C(25)-C(26)\\ C(26)-C(27)\\ C(23)-C(28)\\ C(27)-C(28)\\ C(28)-F(2)\\ N(3)-C(1) \end{array}$	1.511 (5) 1.542 (5) 1.514 (5) 1.386 (6) 1.528 (5) 1.379 (6) 1.386 (6) 1.390 (6) 1.358 (7) 1.367 (7) 1.367 (7) 1.367 (7) 1.367 (5) 1.349 (6) 1.372 (6) 1.370 (5) 3.044 (3)
$\begin{array}{c} (b) \ \mbox{ Angles} \\ C(2)-C(1)-C(3) & 121\cdot1 \ (5) & N(3)-C(13)-C(14) & 116\cdot4 \ (4) \\ C(1)-C(2)-C(4) & 121\cdot5 \ (5) & C(13)-C(14)-C(15) & 105\cdot5 \ (4) \\ C(1)-C(3)-C(6) & 117\cdot6 \ (5) & C(14)-C(15)-C(16) & 114\cdot1 \ (4) \\ C(2)-C(4)-C(5) & 117\cdot4 \ (4) & C(15)-C(16)-C(25) & 113\cdot7 \ (4) \\ C(4)-C(5)-C(6) & 120\cdot8 \ (4) & C(15)-C(16)-C(25) & 113\cdot7 \ (4) \\ C(4)-C(5)-N(1) & 132\cdot9 \ (4) & C(19)-C(16)-C(25) & 113\cdot7 \ (4) \\ C(6)-C(5)-N(1) & 106\cdot3 \ (3) & C(18)-C(17)-C(22) & 118\cdot3 \ (5) \\ C(3)-C(6)-N(2) & 130\cdot9 \ (2) & C(16)-C(19)-C(18) & 123\cdot8 \ (4) \\ C(5)-C(6)-N(2) & 107\cdot6 \ (2) & C(16)-C(19)-C(20) & 118\cdot3 \ (4) \\ C(5)-N(1)-C(7) & 110\cdot0 \ (3) & C(18)-C(19)-C(20) & 117\cdot9 \ (4) \\ C(5)-N(1)-C(8) & 128\cdot8 \ (3) & C(19)-C(20)-C(21) & 121\cdot7 \ (5) \\ C(7)-N(1)-C(8) & 128\cdot8 \ (3) & C(17)-C(22)-C(21) & 123\cdot1 \ (5) \\ N(1)-C(7)-N(2) & 105\cdot8 \ (2) & C(17)-C(22)-F(1) & 118\cdot7 \ (5) \\ N(1)-C(7)-N(2) & 105\cdot8 \ (2) & C(17)-C(22)-F(1) & 118\cdot7 \ (5) \\ N(1)-C(7)-O(1) & 126\cdot3 \ (4) & C(17)-C(22)-F(1) & 118\cdot7 \ (5) \\ N(1)-C(8)-C(9) & 110\cdot5 \ (4) & C(23)-C(24)-C(25) & 120\cdot8 \ (4) \\ N(1)-C(8)-C(12) & 111\cdot3 \ (3) & C(16)-C(25)-C(26) & 120\cdot4 \ (4) \\ C(9)-C(10)-N(3) & 108\cdot5 \ (4) & C(23)-C(26)-C(27) & 121\cdot7 \ (5) \\ C(10)-N(3)-C(13) & 112\cdot8 \ (4) & C(23)-C(28)-F(2) & 118\cdot7 \ (4) \\ C(23)-C(28)-C(27) & 123\cdot9 \ (5) \\ C(11)-N(3)-C(13) & 113\cdot7 \ (4) & C(23)-C(28)-F(2) & 118\cdot7 \ (4) \\ \end{array}$	(b) Angles		N(3) - CI(1)	3.044 (3)
	$\begin{array}{c} C(2)-C(1)-C(3)\\ C(1)-C(2)-C(4)\\ C(1)-C(3)-C(6)\\ C(2)-C(4)-C(5)\\ C(4)-C(5)-C(6)\\ C(4)-C(5)-N(1)\\ C(5)-C(6)-N(2)\\ C(3)-C(6)-C(5)\\ C(3)-C(6)-N(2)\\ C(5)-C(6)-N(2)\\ C(5)-N(1)-C(7)\\ C(5)-N(1)-C(7)\\ C(5)-N(1)-C(8)\\ C(7)-N(1)-C(8)\\ N(1)-C(7)-N(2)\\ N(1)-C(7)-O(1)\\ N(1)-C(7)-O(1)\\ N(1)-C(7)-O(1)\\ N(1)-C(7)-O(1)\\ N(1)-C(7)-O(1)\\ N(1)-C(7)-O(1)\\ N(1)-C(7)-O(1)\\ C(6)-N(2)-C(7)\\ N(1)-C(8)-C(9)\\ N(1)-C(8)-C(12)\\ C(8)-C(9)-C(10)\\ C(9)-C(10)-N(3)\\ C(10)-N(3)-C(13)\\ C(11)-N(3)-C(13)\\ \end{array}$	$\begin{array}{c} 121 \cdot 1 \ (5) \\ 121 \cdot 5 \ (5) \\ 117 \cdot 6 \ (5) \\ 117 \cdot 4 \ (4) \\ 120 \cdot 8 \ (4) \\ 132 \cdot 9 \ (4) \\ 132 \cdot 9 \ (4) \\ 130 \cdot 9 \ (2) \\ 107 \cdot 6 \ (2) \\ 110 \cdot 0 \ (3) \\ 121 \cdot 5 \ (4) \\ 107 \cdot 6 \ (2) \\ 110 \cdot 0 \ (3) \\ 128 \cdot 8 \ (3) \\ 121 \cdot 2 \ (3) \\ 121 \cdot 2 \ (3) \\ 127 \cdot 9 \ (6) \\ 110 \cdot 4 \ (9) \\ 110 \cdot 5 \ (4) \\ 111 \cdot 3 \ (3) \\ 112 \cdot 0 \ (4) \\ 111 \cdot 0 \ (4) \\ 108 \cdot 5 \ (4) \\ 110 \cdot 4 \ (3) \\ 112 \cdot 8 \ (4) \\ 112 \cdot 7 \ (4) \end{array}$	$\begin{split} &N(3)-C(13)-C(\\ &C(13)-C(14)-C(\\ &C(14)-C(15)-C(\\ &C(15)-C(16)-C(\\ &C(15)-C(16)-C(\\ &C(19)-C(16)-C(\\ &C(19)-C(16)-C(\\ &C(19)-C(19)-C(\\ &C(16)-C(19)-C(\\ &C(19)-C(20)-C(\\ &C(19)-C(20)-C(\\ &C(19)-C(20)-C(\\ &C(19)-C(20)-C(\\ &C(19)-C(20)-C(\\ &C(19)-C(20)-C(\\ &C(19)-C(20)-C(\\ &C(10)-C(20)-C(\\ &C(20)-C(20)-C(\\ &C(20)-C(\\ &C(20)-C(\\$	14) $116 \cdot 4$ (4)(15) $105 \cdot 5$ (4)(16) $114 \cdot 1$ (4)(19) $113 \cdot 2$ (4)(25) $113 \cdot 7$ (4)(25) $113 \cdot 7$ (4)(25) $109 \cdot 6$ (4)(22) $118 \cdot 3$ (5)(19) $121 \cdot 5$ (5)(18) $123 \cdot 8$ (4)(20) $117 \cdot 9$ (4)(21) $121 \cdot 7$ (5)(21) $123 \cdot 1$ (5)(11) $118 \cdot 7$ (5)(21) $123 \cdot 1$ (5)(12) $117 \cdot 6$ (5)(21) $123 \cdot 1$ (5)(13) $118 \cdot 7$ (5)(25) $120 \cdot 8$ (4)(26) $120 \cdot 4$ (4)(26) $118 \cdot 7$ (4)(27) $121 \cdot 7$ (5)(28) $116 \cdot 8$ (5)(27) $123 \cdot 9$ (5)(2) $118 \cdot 7$ (4)

Table 4. Interatomic distances (Å) involving hydrogen with estimated standard deviations in parentheses

H(1) - C(1)	0.98 (4)	H(16)C(13)	0.97 (6)
H(2) - C(2)	0.98 (4)	H(17) - C(13)	1.19 (6)
H(3) - C(3)	0.98 (4)	H(18) - C(14)	0.98 (5)
H(4) - C(4)	1.00 (4)	H(19) - C(14)	1.08 (5)
H(5) - N(2)	0.97 (6)	H(20) - C(15)	1.05 (5)
H(6) - C(8)	1.03 (4)	H(21) - C(15)	1.10 (5)
H(7) - C(9)	1.04 (4)	H(22) - C(16)	1.09 (4)
H(8) - C(9)	0.98(5)	H(23) - C(17)	0.94 (4)
H(0) = C(10)	1.05(4)	H(24) - C(18)	1.07 (4)
H(10) = C(10)	1.06 (5)	H(25) - C(20)	1.02 (5)
H(11) - N(3)	$1 \cdot 15(7)$	H(26) - C(21)	1.00 (4)
H(12) = C(11)	$1 \cdot 10(5)$	H(27) - C(23)	0.98 (4)
H(12) = C(11)	0.97(5)	H(28) - C(24)	0.93 (4)
H(14) = C(12)	0.99(4)	H(29) - C(26)	1.07 (4)
H(15) - C(12)	0.98(4)	H(30) - C(27)	1.07 (4)
$\Pi(13) = O(12)$	0,00(4)		= = • (•)

Table 5. Equations of mean planes with displacements (Å) of relevant atoms in square brackets

Equations are based on orthonormalized coordinates; X is parallel to the crystallographic a axis, Y is perpendicular to X in the plane ab, and Z is perpendicular to the plane ab and completes a right-handed set of axes X, Y, Z.

Plane (1) C(1), C(2), C(3), C(4), C(5), C(6)

-0.145X + 0.509Y + 0.848Z = 6.097

[C(1) 0.001, C(2) 0.002, C(3) 0.000, C(4) -0.005, C(5) 0.006, C(6) - 0.004]

Plane (2) C(1), C(2), C(3), C(4), C(5), C(6), N(1), N(2), C(7), O(1)

-0.142X + 0.506Y + 0.851Z = 6.134

[C(1) -0.006, C(2) -0.007, C(3) 0.001, C(4) -0.009, C(5) 0.010,C(6) 0.002, N(1) 0.023, C(7) -0.004, N(2) 0.014, O(1) -0.024]

Plane (3) C(17), C(18), C(19), C(20), C(21), C(22)

-0.202X + 0.974Y + 0.106Z = 8.295[C(17) -0.010, C(18) 0.008, C(19) -0.001, C(20) -0.004,C(21) 0.002, C(22) 0.005

Plane (4) C(23), C(24), C(25), C(26), C(27), C(28)

0.783X + 0.254Y - 0.568Z = 8.411

[C(23) -0.005, C(24) 0.004, C(25) -0.005, C(26) 0.007,C(27) = 0.008, C(28) 0.008

This work has been made possible by the support of the British Medical Research Council and the United States Public Health Service, National Institute of Mental Health under Grant MH24284 and National Institute of Neurological and Communicative Disor-

Table 6. Selected torsion angles (°) for non-hydrogen atoms

C(9)-C(8)-N(1)-C(5) C(9)-C(8)-N(1)-C(7) C(10)-C(9)-C(8)-N(1) N(3)-C(10)-C(9)-C(8) C(11)-C(12)-C(8)-N(1) C(12)-C(12)-C(8)-N(1) C(12)-C(12)-C(12)-C(8)-N(1) C(12)-C(12)	63 -113 -177 58 175	$\begin{array}{c} C(14)-C(13)-N(3)-C(10)\\ C(15)-C(14)-C(13)-N(3)\\ C(16)-C(15)-C(14)-C(13)\\ C(18)-C(19)-C(16)-C(15)\\ C(19)-C(16)-C(15)-C(14)\\ C(20)-C(19)-C(16)-C(15)\\ \end{array}$	82 -176 -158 15 165 -164
C(10)-C(9)-C(8)-N(1)	-177	C(16)-C(15)-C(14)-C(13)	-158
N(3)-C(10)-C(9)-C(8)	58	C(18)-C(19)-C(16)-C(15)	15
C(11)-C(12)-C(8)-N(1)	175	C(19)-C(16)-C(15)-C(14)	165
C(12)-C(11)-N(3)-C(13)	-169	C(20)-C(19)-C(16)-C(15)	-164
C(12) = C(8) = N(1) = C(5)	-62	C(24)-C(25)-C(16)-C(15)	-72
C(12)-C(8)-N(1)-C(7)	122	C(25)-C(16)-C(15)-C(14)	-69
C(13) = N(3) = C(10) = C(9)	168	C(26)-C(25)-C(16)-C(15)	109

 $\sigma(\tau) = 0.5^{\circ}$.

Table 7. Intermolecular distances (Å) <3.6 Å for nonhydrogen atoms

$Cl(1) \cdots N(2^{i})$	3.20	$C(27^v)\cdots F(1^{iii})$	3.23
$C(13)\cdots O(1^{i})$	3.40	$C(28^v)\cdots F(1^{111})$	3.56
$C(15)\cdots O(1^i)$	3.37	$C(10^{iv})\cdots F(2^{v})$	3.11
$C(11) \cdots O(1^{ii})$	3.04	$C(13^{iv})\cdots F(2^{v})$	3.55
$C(12) \cdots O(1^{H})$	3.42	$C(14^v)\cdots F(2^{vi})$	3.41
$C(5)\cdots C(21^{vi})$	3.55	$C(17^{iv})\cdots F(2^{vii})$	3.52
$C(3) \cdots F(2^{vil})$	3.37	$F(1^{iii})\cdots F(2^{vi})$	3.41
$C(4)\cdots C(20^{vi})$	3.56		
$C(9) \cdots C(6^{viii})$	3.54		
$C(26^{v})\cdots F(1^{iii})$	3.30		

Roman numerals as superscripts denote the following symmetry transformations:

i)	x - 1, y, z	(v)	$-x, \frac{1}{2} + y, \frac{1}{2} - z$
ii)	1 - x, -y, 1 - z	(vi)	-x, -y, 1-z
iii)	$-x-1, \frac{1}{2}+y, \frac{1}{2}-z$	(vü)	$1-x, \frac{1}{2}+y, \frac{1}{2}-z$
iv)	-x,-y,-z	(viii)	1 - x, -y, -z.

ders and Stroke under Grant NS12021. We are most grateful to Douglas Richardson for computer programs, discussion and inspiration, to Mrs Ann Steward for assistance, Paul Janssen for the sample and John Cresswell for photographs.

References

- BUSING, W. R., ELLISON, R. D., LEVY, H. A., KING, S. P. & ROSEBURY, R. T. (1968). The Oak Ridge Computer-Controlled X-ray Diffractometer, US Atomic Energy Commission. Report ORNL-143, Oak Ridge, Tennessee.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104-109.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.